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Off-lattice noise reduced diffusion-limited aggregation in three dimensions
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Using off-lattice noise reduction, it is possible to estimate the asymptotic properties of diffusion-limited
aggregation clusters grown in three dimensions with greater accuracy than would otherwise be possible. The
fractal dimension of these aggregates is found to be 2.50+£0.01, in agreement with earlier studies, and the
asymptotic value of the relative penetration deptt/Rye,=0.122+0.002. The multipole powers of the growth
measure also exhibit universal asymptotes. The fixed point noise reduction is estimated'te (8035,
meaning that large clusters can be identified with a low noise regime. The slowest correction to scaling
exponents are measured for a number of properties of the clusters, and the exponent for the relative penetration
depth and quadrupole moment are found to be significantly different from each other. The relative penetration
depth exhibits the slowest correction to scaling of all quantities, which is consistent with a theoretical result
derived in two dimensions. We also note fast corrections to scaling, whose limited relevance is consistent with
the requirement that clusters grow far enough in radius to support sufficient scales of ramification.
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Diffusion-limited aggregatiofDLA) [1] is an extensively [8] has proved valuable in understanding the asymptotic
studied model of diffusion limited growth which appears to properties of clusters, complicated by their sensitivity to lat-
capture the essential features of many different physicaice anisotropy9,10]. Using a conformal map from the unit
growth phenomen#§2-5]. However, the fractals generated circle to the boundary of a growing cluster, Hastings and
have evaded a complete understanding for many years aféVitov [11] introduced a technique for implementing a
there has recently been controversy over whether diffusiond0ise reduction scheme for DLA clusters grown off-lattice.
limited aggregates are truly fracti]. Rather than adding particles to the cluster, bumps were

DLA is modeled[1] by allowing particles to randomly added to the conformal map. Badt al. [12] built on this

walk from a sphere surrounding the cluster, one at a time‘,’vork’ allowing crescent-shaped bumps to be added to DLA

until they contact the cluster, at which point they are irrevers<IUSters without the need for a conformal map. In this ap-
ibly stuck. Detailed stud7] has shown that DLA growth in proach, the particles are allowed to diffuse normally until

: : ; they contact the cluster. At this point the new particle is
two d|men3|qns does approach true fractal scaling, but Wltrﬁouching the cluster, and the distance between the center of
slowly decaying corrections to scaling of the form

the new particle and the center of the particle it contacted in
_ - the cluster is equal to the diameter of one particle. To imple-
Qn=Q.+CN'™, @) ment noise reduction, this distance is reduced by a faktor
<1, so that the new particle is deposited partially inside the
cluster: the effect is to protrude a shallow bump of height

on the cluster perimeter. Since this method does not rely on a
conformal map it allows the growth of noise reduced DLA
clusters off-lattice in any dimension.

Most of the work on DLA has been restricted to two di-
mensions. Meakin pioneered work on DLA in higher dimen-
sions, growing clusters in dimensions upde8 [13]. Much
of that work has focused on estimating the fractal dimension

f DLA clusters and the scaling of the relative penetration
epth[14-16, yet firm conclusions have proved difficult.

where Qy is some property of the cluster, tending towards
the valueQ., as the number of particles in the clustat,
tends to infinity. Here the correction to scaling exponerg
expected to exhibit some universality while the cons@gt
will not. For aggregates grown in two dimensions, it has
been arguedl7] that there should be no quantity whose cor-
rection to scaling is slower than that of the relative penetra
tion depth,£/Ryep WhereRyepis the average radius at which
new particles are deposited afds the standard deviation of
the same. Here and below we take as origin the centroid
the depositing _partlcles. . . There has also been some progress measuring the multifrac-
When studying DLA grown on a lattice, reducing the shot | ghectrum of DLA in three dimensiofis7—19. However,
noise associated with the growth being by discrete particlep,,yigovitch et al. [20] recently claimed that all previous
attempts to measurg«) in two dimensions are poorly con-
verged, so the early three dimensional measurements should
*Also at Department of Physics, University of Warwick, Coven- be taken with caution. Other work has also examined DLA

try, CV4 7AL, UK. on a cubic lattice in the limit of zero noig@1], and the
Electronic address: Neill.Bowler@metoffice.gov.uk extension of the fixed scale transformation to 3 dimensions
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FIG. 1. A DLA cluster grown in three dimensions wiN=10" 2.65
particles and noise reduction facté=0.1, where the different
shading indicates a different time of deposition on the cluster.

2.55

In this paper we exploit the new noise reduction tech-
nigues to explore the convergence to scaling of DLA in three
dimensions. We grew 1000 DLA clusters off-lattice in three 2.45
gl)mnegilfngzp%n?mg(;ge Oégffrgrr:tdvglnuii:rfntphli Z?JZ?errev?/iL:ﬁ_ FIG. 2. The _measured fractal dimensién of DLA clusters,
N=10* particles andA=0.1 is shown in Fig. 1. At integer .esnmated by taking the local SlOpe. OffVS InRyep PlOt.ted vsN .
values of loggN, the growth of the clusters was suspendedm the upper panel, the results for different levels of noise reduction

G o] i " the ol " th A are initially well separated but converging to a universal dimen-
and 1 pr_Obe particles were 'r_ed at” the cluster: t €S€ 5ion 0f D=2.50+0.01. The noise reduced results come much more
probe particles were allowed to diffuse freely,

_ _ Y, one at a timeqgether when plotted vs IRgep s in the lower panel, suggesting
until they contacted the cluster, at which point their locationyt it is fundamentally radius which governs the departurd® of

was recorded and the particle was deleted. In this way th@om its asymptote. The inset shows-2.5) vs In Raepand the
growing properties of the clustefsuch as the penetration guideline drawn corresponds B 2.5 -é-p?

depth and multipole momentsvere estimated. The code

used is a direct descendant of that of MegKid], which in  fractal dimension is shown in Fig. 2. The dimensions esti-
turn builds on the computational tricks of Ball and Brady mated for each value oA appear to be converging to a
[23] to speed up computation. While the code is truly latticecommon value ofD=2.50+0.01 which is consistent with
free, the smallest step size that a particle was allowed to takerevious computational estimatgd3]. The data for A

was set equal to one particle radius. Comparisons in 2 di=0.03 andA=0.01 are less well converged, and the results
mensions between this and an algorithm which uses a mugtould be made more accurate with data for lafger

smaller minimum step size have shown that any effect that Plotting the fractal dimension data against radRig,

this has on the results is the same order as the noise in tigives a much more coherent convergence of the noise re-

measurements attributable to intercluster variabjta]. duced growth data, as shown in the lower panel of Fig. 2.
Thus it appears that the convergence of the fractal dimension

I. FRACTAL DIMENSION AND APPROACH TO in noise reduced growth is primarily governed by the radius
SCALING attained: we suggest this is simply reflects the need for noise

reduced clusters to develop sufficient branching structure.
The value of radius require@f order 10 particle diameters
Sor accurateD) is qualitatively reasonable and we discuss a
refinement of this below in relation to angular fine structure.
In(N,) = In(N,) The approach ob to scaling also exhibits some dependence
D= IN(RaedNy)) — IN(Ryed Ny)) (2 of amplitude on the level of noise reduction, but this is com-
edN2 ed N1 paratively weak. For all noise reductiofisicluding none
where the properties are measured at two different clustehe variation ofD—2.5 with radius is roughly consistent with
sizesN; and N,. For the clusters grown, the value of the a power law,D - 2.5 Ryz: o N0 for In(Ryep > 1. It is im-

We calculate the effective value of fractal dimension from
the local slope of the average radius of deposition vs numb
of particlesN according to
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portant that this is a relatively rapid convergence to scaling, ¥ T
much more rapid than the slow corrections to scaling dis- I
cussed below. L

0.005\

Il. CRITICAL AMPLITUDES AND THEIR CORRECTIONS
TO SCALING

I

wd

We now consider the approach to fixed point behaviour.°|§
for DLA in three dimensions, in terms of dimensionless 001
guantities which can be directly measur@b opposed to
being inferred by differentiating measured data two di-
mensions it has been shown that no property of the cluste |
has a slower correction to scaling than the relative penetra ggsl— . . . NI : s
tion depth and suggested that all properties should show in 01 0.15 & 02 025
fluence of this slowest correctidid]. Ry

To measure the slowest correction to scaling exponent of ] _ ) _
a quantity, we used differential plots which proved effective  FIG. 3. Differential plot of relative penetration dep8iRgep
for DLA in two dimensiong 12]. For some converging quan- (horlgontal scalp agallnst its owq derivative Wlth res.pe.ct to M
tity Qy, which displays a single correction to scalifigq. (vertical scale The intercept with zero derivative indicates the

(1], then asymptotic value ofé/Rye, for inf_iniFg N is given by S/Rqedgc
=0.122+0.002 and the common limiting slope of the plots indicates
dQy a correction to scaling exponent p£0.22+0.03. Growth at differ-
ain(N) Y(Qn = Qx), (3)  ent levels of noise reductioA=0.03 is consistent with universal

values of asymptote and exponent, while0.01 appears to start
so a plot ofdQ/d In(N) againstQ should exhibit a straight and remain close to the “fixed point” value éfRye, The circled
line with slope v, intercepting thex axis at the asymptotic points correspond to the first value of radius above 10 for each

value Q... We approximated the differential by curve, beingRye,=11.0, 14.1, 12.7, 11.3, and 10(& order of
increasing noise reduction from=1), showing how the onset of
dQ QNz_ QNl universal correction to scaling is primarily set by radius. The cor-

(4) responding values dfl are given byN=562, 5620, 17800, 56200,

din(N)  In(Nz/Ny) and_178000 and along each curve points are spaced by factors

and its statistical error by of 10.
0( dQ ) _ \/az(QNz) * UZ(QNl) (5) In the regime dominated by it, the slow correction to scal-
dIn(N) IN(N,/N,) ' ing in the relative penetration depth is reduced in amplitude

. ) . . by increasing noise reduction, even comparing at fiked
whereo(Qy) is the standard error iQy, and the differentials s can be seen in Fig. 3 by comparing the leftmost point of

are plotted against the interpolated va(Qe(QN2+QNl)/2_ each curve, corresponding d=10° walkers per cluster in
The relative penetration depth is simply the relativeeach case. This is in contrast to the fast corrections to scaling
spread of radius over which walkers are deposited, at fixe@xhibited in the fractal dimensio®, which largely track
cluster size, computed as standard deviation of radius ofadius and hence require more walkers at a given level of
deposition divided by its mean. The application of the abovenpise reduction to fall below a given threshold. The combi-
differential analysis to this ratio is shown in Fig. 3. The key nation of these two observations leads to the least noise re-
feature is the universal linear asymptote, corresponding tgyction (A=1) giving us the clearest plot and slope for the
limiting values of the relative penetration depth and its leadjowest correction to scaling and its exponent: this is the case
ing correction to scaling index, independent of the level ofyynere the slowest correction has largest amplitude and where
noise reduction. As in two dimensions t_he limiting value isthe fast correction to scaling is least obtrusive.
very modest, &/Rye.=0.122+0.002, with the result that 1o more fully characterise the DLA clusters we measured
different moments of the deposition distribution give very the multipole powers, since the corresponding multipole mo-
similar mean radii. o _ ments provide an orthogonal set which may be used to to-
The slope of the common asymptote in Fig. 3 gives ag|ly describe the growing properties of the clusters. In three

correction to scaling exponent:(_).2210.03._ This corre-  gimensions the multipole moments are estimated($ge
sponds to a much slower correction to scaling than the efr25) chap. 4

fects in the fractal dimension plots discussed in the preceding

section, and as a result it is asymptotically dominant over 1

those. The asymptotic dominance of the slow correction to A== > 1Y, (6, b)) (6)
scaling is also directly confirmed by noting that the corre- Ni=1n

sponding points in Fig. 3 come from radiRge,> 10: this is

clearly inside the regime where the fast corrections cease tasingn probe particles which contact the clustefm@t 6;, ¢;)
be important inD. for i=1 ton. We normalized the multipole power as
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FIG. 4. Differential plots for the first founontrivial) multipole moment$,-Ps. All of the plots exhibit universal asymptotic values,
corresponding to the extrapolation to zero derivative, and universal limiting slope corresponding to their correction to scaling exponent. The
correction to scaling exponents were estimated by ey#Rg=0.32+0.02,1(P3)=0.24+0.03,1(P4) =0.26+£0.06, and/(P5)=0.29+0.05,
where the errors represent the maximum believable error.

ZI (e also for the relative variabilitybetween clusters at fixed)
m=—f [ m ) of extremal cluster radius in Fig. 5. The universality of the

T @+ )R asymptotic values of all these plots is strong indication that
the limiting distribution of cluster shape is universal.
where the effective radius is in turn given by The slopes of these same plots indicate the correction to
scaling exponents, which also appear to be universal with
1 - g1l (8) respect to the noise reduction. Figure 6 shows the measured
Rt N1 values of the correction to scaling exponents for each of the

quantities plotted(and all multipole moments measujed

The definition ofR. is such that it gives the radius of spheri- The exponent for the quadrupole powes is significantly
cal target of equivalent absorption strength to the clusterdifferent from the exponents faf/ Ry, and P5. There is no
constituting a natural choice of radius relating to the zerothquantity which shows a slower correction to scaling than
multipole sector. ¢/ Ryep Which suggests that the result found by Sonefaal.

Note that for each measurement we used the center ¢¥] in some sense also applies to clusters grown in three
charge as origin, meaning zero dipole moments and henagimensions.
P,=0; otherwise there is confusion between cluster shape The values of the correction to scaling exponents are least
and drift of the cluster centdrlbeit the latter is rather neg- precise for the highest multipole moments, as these are most
ligible). sensitive to the fine structure of the cluster. Intriguingly, the

The first and important feature of our differential plots is asymptotic value of the relative penetration depth for DLA
again the indication of limiting asymptotic valu€s. [corre-  clusters in three dimensions is equal within measurement
sponding todQ/d In(N)=0] and approaching slopes which error to that of the two dimensional case: see Fig. 3 here and
are universal, independent of the level of noise reductionFig. 3 in[12]. The correction to scaling exponent #é#Rye,
This is shown for the multipole powef,—Ps in Fig. 4, and  is around% the value of the exponent for clusters grown in
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FIG. 7. For each multipole power we identified radiRjsvhere
[ ] its differential plot became dominated by the universal slow correc-
02— . . . ... tion to scaling. This judgement was made by eye separately for each
0 0.05 &R, 01 0.15 value of noise reductioA=1 to A=0.03, and the error bars shown
K. correspond to error in the mean oRnwhen separate values from

) ) . o different noise reduction values were combined statistically. The
FIG. 5. Differential plot of the relative fluctuation in extremal dependence on noise reduction level was weak. The guideline

radius, 9 %XIIRQXP_ The asymptotic_ value is _‘3 zext/R?Xt'w . shows the consistency of the data with a simple linear dependence
=0.032+0.004 which leads to an estimate of the fixed point noises R on the multipole index, explained in the text by a simple

. .
reduction ofe*=0.0064+0.0016. spatial resolution threshold.

two dimensions, indicating that DLA clusters in three dimen-

: X erally approach the fixed point from the opposite direction,
sions are considerably slower to mature.

making it hard to deciddy, consistently; we therefore ex-
cludedA=0.01 from this analysis.
IIl. RESOLUTION OF ANGULAR STRUCTURE The plot ofR in Fig. 7 is clearly consistent with a simple
o . _linear dependence dn and this in turn has a simple inter-
We have also made a limited analysis of how the multi-pretation in terms of the smallest cluster radius at which the
pole powers depart from universal correction to scaling befeatures probed by thkth angular harmonics can be sup-
haviour at smalleN. For the dlffergnt|al plot.of each multi- ported. The cluster cannot support features finer than the
pole power, at each value of noise reducti®r0.03 toA  particle size, which at raditR corresponds to angular scale
=1, we identified the first point lying on the universal curve. 1/R, while angular harmonics of ordémre sensitive to fea-
Quantified in terms of the corresponding cluster radi¥is tyres of angular scale L/Matching these leads g | in
these vary systematically with the multipole indéx as agreement with our data.
shown in Fig. 7. Their dependence éns weak and below Thus we are again led to the conclusion that the regime of
the (substantiglscatter, so values from differeAthave been  njversal correction to scaling sets in once the cluster is large
combined statistically at each (For the highest level of enough to support sufficient ramification. The thresholds of
noise reductiorA=0.01 and =6, the differential plots gen- R seen for the convergence of the fractal dimension and the
relative penetration depth correspond to the thresholdRon
O4—7— 71— 1 1 T T T T 1] seen forP5;. While this is at first sight rather low, it is rea-
sonable when one notes from Fig. 1 that these clusters have
[ | relatively few major arms, equivalent to their major angular
0.3 . features being at large angles.

IV. FIXED POINT NOISE REDUCTION

¥ ] It is clear from differential plots such as Fig. 3 that the
noise reduction “controls” the slowest correction to scaling.
[ 1 For low values ofA this correction to scaling is strongly
0.1 - reduced, and we may write the behavior of this correction as
[ ] follows:
- 1 Qn=Qx + Co(AN™. 9
e s . . N
R, . R—::‘ Other corrections to scaling need not dependdpibut it is

quite evident that the amplitude of the slowest correction to
FIG. 6. The correction to scaling exponents obtained from dif-Scaling is strongly affected by it. If there is some valughof
ferential plots of different multipole powers, and the two other for which all Co(A) are zero, then this value of the noise
quantities marked. The exponent for the quadrupole pdweis  reduction would correspond to the fixed point of a renormal-
significantly different from the exponents measured#§tRge,and  ization schemésee[10]). The plots forP,—P, suggest that
Ps. the fixed point noise reduction i8f<0.01 and plots of
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10° the curves collapse to a single line. From the shift factors
ik used, we estimate the effective noise reductions to be
. A=1, f=1,
10*F
10°- A=03, &M=0.19,
102
o A=0.1, "=0.05, (13
101_
. A=0.03, €"=0.012,
10°F
10 , A=0.01, €"=0.0034.
102 < L L Hence one concludes that the fixed point noise reduction in
10?2 10" 10° 10" 10° 10° ;
L Eq. (10) should be adjusted to
_ _ _ _ €' <0.0035. (14)
FIG. 8. The two point correlation function for clusters grown in
three dimensions, scaled by effective noise reduction facesf's, The values fore' and * differ by a factor of 2, demon-
This noise reduction is chosen so that a data collapse is seen fgtrating that the identification process is open to some errors.
smallL. If, as indicated by the results in Fig. 6, a single slowest

correction to scaling exponent does not control the scaling of
&/ Ryep Ps are unclear as to the value of the fixed point noisedll parameters, then a theoretical renormalization scheme

reduction. Hence, one estimates that would need more than one parameter to match this behavior.
. If more than one parameter is indeed relevant, then our ar-
A < 0.01. (100 guments to matck’ ande* based on noise reduction alone is

The noise reduction of the fixed point can also be estiCertainly not expected to be perfect.

mated from the asymptotic properties of DLA clusters using V. CONCLUSION
the Barker and Ball formul@10]
5 The growth off-lattice of noise-reduced diffusion-limited
e*= Dz(&xt) (11) aggregates in three dimensions has been considered and
Rext / shown to exhibit universality with respect to noise reduction.

) ] ] The fractal dimension is found to H@=2.50+0.01 which
where R,y is the ex’gremal cluster rad|L($he_rad|us of 'ghe agrees with previous computatiofa] and mean field27]
furthest cluster particle from the seed particd®d SR,y IS

ot ! e estimates. The penetration depth scales with the radius, and
the cluster to cluster variability dRe, This was originally  he asymptotic value of the relative penetration depth is
cast in terms of the variability dfl at fixed radiusR,,;and in ¢/R4ep=0.122+0.002 which overlaps the value found for

two dimensions it was shown to be important to tune oUtc|ysters grown in two dimensiof42]. The convergence of
lattice anisotropy10], yet subsequent work restricted to just the multipole powers provides a very strong indication that
2 X 2 renormalization cellsand with uncontrolled lattice ef- p| A cluster growth, in three dimensions and off-lattice, con-
fecty claimed fixed point noise reduction values of orderverges to a universal distribution of cluster shapes.

unity [26]. More recently direct off-lattice measurements us-  Thg relative penetration depth exhibited the slowest cor-
ing Eq._(ll) were shown to giver*=0.0036+0.0006 in two  rection to scalingN®22:0.93 Some multipole powers and also
dimensions[12], in agreement with the trend of values in ihe rejative fluctuations in extremal radius exhibited correc-

[10]. For off-lattice DLA in three dimensions, we now have s, g scaling exponents which could be consistent with the
from Fig. 5 that the asymptotic value of the relative variabil- g3 me. However not all quantities exhibit the influence of the

ity of extremal cluster radius isRey/ Rexd--=0.032£0.004.  gowest correction to scaling and in particular the conver-
By the methodology of referen¢d?2] this leads to gence to scaling of the dipole powe?,, appears signifi-
€*=0.0064 + 0.0016, (12) cantly fas_ter than that of_eith@i Rgep OF P3. _

Reducing the input noise by factors up to 100, by growing

in three dimensions, which is consistent with the estimatealusters in shallow bumps, clearly reduces the amplitude of

value of A, the leading correction to scaling. This supports in three di-
For a noise reduction @&, one would naively assume that mensions the idea of Barker and BELO] that the intrinsic

it would require of ordeN/A particles to grow a cluster with  fluctuation level is the physical origin of that slowest correc-

the same radius as a non-noise reduced clustirprticles.  tion to scaling. We estimated the fixed point noise reduction

Our data below show that this is a systematic underestimatép be ¢ ~0.0035 and this is close to the value estimated
so that each value ok corresponds to a more severe noiseusing the Barker and Balll0] formula in terms of relative

reduction than expected. Figure 8 shows the two point corfluctuation in extremal radius.
relation function for DLA clusters grown at different noise  All of the above discussion relies on growing clusters
reductions. The graphs have been shifted vertically so that ableyond the influence of much faster corrections to scaling

011403-6



OFF-LATTICE NOISE REDUCED DIFFUSION-LIMITED... PHYSICAL REVIEW E 71, 011403(2005

with »=0.6, as most dominantly observed in the fractal di-titative model of the convergence of that fluctuation level
mension. These have little sensitivity to noise reductionappears to be the outstanding challenge in understanding iso-
when plotted in terms of the radius of growth. This and thetropic DLA (in any dimensioh Another important challenge
variation of their relevance on the order of multipole powerfor three dimensions, for which work is in progress, is the
studied is consistent with the trivial requirement that therole which material anisotropy can plg28].

cluster must grow large enough to support the required scales
of ramification.

Taken together our results support the hypothesis that iso-
tropic DLA in three dimensions approaches a simple en- The authors wish to thank Paul Meakin and Thomas Rage
semble of statistically self-similar clusters, with a rather slowfor supplying code used for growing clusters in this study,
approach to scaling which is associated with the level ofand Leonard Sander and Ellak Somfai for their enlightening
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