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Using off-lattice noise reduction, it is possible to estimate the asymptotic properties of diffusion-limited
aggregation clusters grown in three dimensions with greater accuracy than would otherwise be possible. The
fractal dimension of these aggregates is found to be 2.50±0.01, in agreement with earlier studies, and the
asymptotic value of the relative penetration depth isj /Rdep=0.122±0.002. The multipole powers of the growth
measure also exhibit universal asymptotes. The fixed point noise reduction is estimated to bee f ,0.0035,
meaning that large clusters can be identified with a low noise regime. The slowest correction to scaling
exponents are measured for a number of properties of the clusters, and the exponent for the relative penetration
depth and quadrupole moment are found to be significantly different from each other. The relative penetration
depth exhibits the slowest correction to scaling of all quantities, which is consistent with a theoretical result
derived in two dimensions. We also note fast corrections to scaling, whose limited relevance is consistent with
the requirement that clusters grow far enough in radius to support sufficient scales of ramification.
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Diffusion-limited aggregationsDLA d f1g is an extensively
studied model of diffusion limited growth which appears to
capture the essential features of many different physical
growth phenomenaf2–5g. However, the fractals generated
have evaded a complete understanding for many years and
there has recently been controversy over whether diffusion-
limited aggregates are truly fractalf6g.

DLA is modeled f1g by allowing particles to randomly
walk from a sphere surrounding the cluster, one at a time,
until they contact the cluster, at which point they are irrevers-
ibly stuck. Detailed studyf7g has shown that DLA growth in
two dimensions does approach true fractal scaling, but with
slowly decaying corrections to scaling of the form

QN = Q` + CQN−n, s1d

whereQN is some property of the cluster, tending towards
the valueQ` as the number of particles in the cluster,N,
tends to infinity. Here the correction to scaling exponentn is
expected to exhibit some universality while the constantCQ
will not. For aggregates grown in two dimensions, it has
been arguedf7g that there should be no quantity whose cor-
rection to scaling is slower than that of the relative penetra-
tion depth,j /Rdep, whereRdep is the average radius at which
new particles are deposited andj is the standard deviation of
the same. Here and below we take as origin the centroid of
the depositing particles.

When studying DLA grown on a lattice, reducing the shot
noise associated with the growth being by discrete particles

f8g has proved valuable in understanding the asymptotic
properties of clusters, complicated by their sensitivity to lat-
tice anisotropyf9,10g. Using a conformal map from the unit
circle to the boundary of a growing cluster, Hastings and
Levitov f11g introduced a technique for implementing a
noise reduction scheme for DLA clusters grown off-lattice.
Rather than adding particles to the cluster, bumps were
added to the conformal map. Ballet al. f12g built on this
work, allowing crescent-shaped bumps to be added to DLA
clusters without the need for a conformal map. In this ap-
proach, the particles are allowed to diffuse normally until
they contact the cluster. At this point the new particle is
touching the cluster, and the distance between the center of
the new particle and the center of the particle it contacted in
the cluster is equal to the diameter of one particle. To imple-
ment noise reduction, this distance is reduced by a factorA
,1, so that the new particle is deposited partially inside the
cluster: the effect is to protrude a shallow bump of heightA
on the cluster perimeter. Since this method does not rely on a
conformal map it allows the growth of noise reduced DLA
clusters off-lattice in any dimension.

Most of the work on DLA has been restricted to two di-
mensions. Meakin pioneered work on DLA in higher dimen-
sions, growing clusters in dimensions up tod=8 f13g. Much
of that work has focused on estimating the fractal dimension
of DLA clusters and the scaling of the relative penetration
depth f14–16g, yet firm conclusions have proved difficult.
There has also been some progress measuring the multifrac-
tal spectrum of DLA in three dimensionsf17–19g. However,
Davidovitch et al. f20g recently claimed that all previous
attempts to measurefsad in two dimensions are poorly con-
verged, so the early three dimensional measurements should
be taken with caution. Other work has also examined DLA
on a cubic lattice in the limit of zero noisef21g, and the
extension of the fixed scale transformation to 3 dimensions
f22g.
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In this paper we exploit the new noise reduction tech-
niques to explore the convergence to scaling of DLA in three
dimensions. We grew 1000 DLA clusters off-lattice in three
dimensions spanning five different values of the noise reduc-
tion A=1, 0.3, 0.1, 0.03, 0.01, and an example cluster with
N=104 particles andA=0.1 is shown in Fig. 1. At integer
values of logÎ10N, the growth of the clusters was suspended
and 105 probe particles were “fired at” the cluster: these
probe particles were allowed to diffuse freely, one at a time,
until they contacted the cluster, at which point their location
was recorded and the particle was deleted. In this way the
growing properties of the clustersssuch as the penetration
depth and multipole momentsd were estimated. The code
used is a direct descendant of that of Meakinf14g, which in
turn builds on the computational tricks of Ball and Brady
f23g to speed up computation. While the code is truly lattice
free, the smallest step size that a particle was allowed to take
was set equal to one particle radius. Comparisons in 2 di-
mensions between this and an algorithm which uses a much
smaller minimum step size have shown that any effect that
this has on the results is the same order as the noise in the
measurements attributable to intercluster variabilityf24g.

I. FRACTAL DIMENSION AND APPROACH TO
SCALING

We calculate the effective value of fractal dimension from
the local slope of the average radius of deposition vs number
of particlesN according to

D =
lnsN2d − lnsN1d

ln„RdepsN2d… − ln„RdepsN1d…
, s2d

where the properties are measured at two different cluster
sizesN1 and N2. For the clusters grown, the value of the

fractal dimension is shown in Fig. 2. The dimensions esti-
mated for each value ofA appear to be converging to a
common value ofD=2.50±0.01 which is consistent with
previous computational estimatesf13g. The data for A
=0.03 andA=0.01 are less well converged, and the results
could be made more accurate with data for largerN.

Plotting the fractal dimension data against radiusRdep
gives a much more coherent convergence of the noise re-
duced growth data, as shown in the lower panel of Fig. 2.
Thus it appears that the convergence of the fractal dimension
in noise reduced growth is primarily governed by the radius
attained: we suggest this is simply reflects the need for noise
reduced clusters to develop sufficient branching structure.
The value of radius requiredsof order 10 particle diameters
for accurateDd is qualitatively reasonable and we discuss a
refinement of this below in relation to angular fine structure.
The approach ofD to scaling also exhibits some dependence
of amplitude on the level of noise reduction, but this is com-
paratively weak. For all noise reductionssincluding noned
the variation ofD−2.5 with radius is roughly consistent with
a power law,D−2.5~Rdep

−1.5~N−0.6 for lnsRdepd.1. It is im-

FIG. 1. A DLA cluster grown in three dimensions withN=104

particles and noise reduction factorA=0.1, where the different
shading indicates a different time of deposition on the cluster.

FIG. 2. The measured fractal dimensionD of DLA clusters,
estimated by taking the local slope of lnN vs lnRdep. Plotted vsN
in the upper panel, the results for different levels of noise reduction
A are initially well separated but converging to a universal dimen-
sion of D=2.50±0.01. The noise reduced results come much more
together when plotted vs lnRdep as in the lower panel, suggesting
that it is fundamentally radius which governs the departure ofD
from its asymptote. The inset shows lnsD−2.5d vs ln Rdep and the
guideline drawn corresponds toD−2.5~Rdep

−1.5.
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portant that this is a relatively rapid convergence to scaling,
much more rapid than the slow corrections to scaling dis-
cussed below.

II. CRITICAL AMPLITUDES AND THEIR CORRECTIONS
TO SCALING

We now consider the approach to fixed point behaviour
for DLA in three dimensions, in terms of dimensionless
quantities which can be directly measuredsas opposed to
being inferred by differentiating measured datad. In two di-
mensions it has been shown that no property of the cluster
has a slower correction to scaling than the relative penetra-
tion depth and suggested that all properties should show in-
fluence of this slowest correctionf7g.

To measure the slowest correction to scaling exponent of
a quantity, we used differential plots which proved effective
for DLA in two dimensionsf12g. For some converging quan-
tity QN, which displays a single correction to scalingfEq.
s1dg, then

dQN

d lnsNd
= − nsQN − Q`d, s3d

so a plot ofdQ/d lnsNd againstQ should exhibit a straight
line with slope −n, intercepting thex axis at the asymptotic
valueQ`. We approximated the differential by

dQ

d lnsNd
.

QN2
− QN1

lnsN2/N1d
s4d

and its statistical error by

sX dQ

d lnsNdC .
Îs2sQN2

d + s2sQN1
d

lnsN2/N1d
, s5d

wheressQNd is the standard error inQN, and the differentials
are plotted against the interpolated valueQ=sQN2

+QN1
d /2.

The relative penetration depth is simply the relative
spread of radius over which walkers are deposited, at fixed
cluster size, computed as standard deviation of radius of
deposition divided by its mean. The application of the above
differential analysis to this ratio is shown in Fig. 3. The key
feature is the universal linear asymptote, corresponding to
limiting values of the relative penetration depth and its lead-
ing correction to scaling index, independent of the level of
noise reduction. As in two dimensions the limiting value is
very modest, uj /Rdepu`=0.122±0.002, with the result that
different moments of the deposition distribution give very
similar mean radii.

The slope of the common asymptote in Fig. 3 gives a
correction to scaling exponentn=0.22±0.03. This corre-
sponds to a much slower correction to scaling than the ef-
fects in the fractal dimension plots discussed in the preceding
section, and as a result it is asymptotically dominant over
those. The asymptotic dominance of the slow correction to
scaling is also directly confirmed by noting that the corre-
sponding points in Fig. 3 come from radiusRdep.10: this is
clearly inside the regime where the fast corrections cease to
be important inD.

In the regime dominated by it, the slow correction to scal-
ing in the relative penetration depth is reduced in amplitude
by increasing noise reduction, even comparing at fixedN.
This can be seen in Fig. 3 by comparing the leftmost point of
each curve, corresponding toN=106 walkers per cluster in
each case. This is in contrast to the fast corrections to scaling
exhibited in the fractal dimensionD, which largely track
radius and hence require more walkers at a given level of
noise reduction to fall below a given threshold. The combi-
nation of these two observations leads to the least noise re-
duction sA=1d giving us the clearest plot and slope for the
slowest correction to scaling and its exponent: this is the case
where the slowest correction has largest amplitude and where
the fast correction to scaling is least obtrusive.

To more fully characterise the DLA clusters we measured
the multipole powers, since the corresponding multipole mo-
ments provide an orthogonal set which may be used to to-
tally describe the growing properties of the clusters. In three
dimensions the multipole moments are estimated byssee
f25g, Chap. 4d

ql,m =
1

n
o

i=1,n
ri

lYl,msui,fid s6d

usingn probe particles which contact the cluster atsr i ,ui ,fid
for i =1 to n. We normalized the multipole power as

FIG. 3. Differential plot of relative penetration depthj /Rdep

shorizontal scaled against its own derivative with respect to lnN
svertical scaled. The intercept with zero derivative indicates the
asymptotic value ofj /Rdep for infinite N is given by uj /Rdepu`
=0.122±0.002 and the common limiting slope of the plots indicates
a correction to scaling exponent ofn=0.22±0.03. Growth at differ-
ent levels of noise reductionAù0.03 is consistent with universal
values of asymptote and exponent, whileA=0.01 appears to start
and remain close to the “fixed point” value ofj /Rdep. The circled
points correspond to the first value of radius above 10 for each
curve, beingRdep=11.0, 14.1, 12.7, 11.3, and 10.5sin order of
increasing noise reduction fromA=1d, showing how the onset of
universal correction to scaling is primarily set by radius. The cor-
responding values ofN are given byN=562, 5620, 17800, 56200,
and 178000 and along each curve points are spaced by factors
of Î10.
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Pl =
om=−l

l
uql,mu2

s2l + 1dReff
2l , s7d

where the effective radius is in turn given by

1

Reff
=

1

n
o

i

1

r i
. s8d

The definition ofReff is such that it gives the radius of spheri-
cal target of equivalent absorption strength to the cluster,
constituting a natural choice of radius relating to the zeroth
multipole sector.

Note that for each measurement we used the center of
charge as origin, meaning zero dipole moments and hence
P1=0; otherwise there is confusion between cluster shape
and drift of the cluster centersalbeit the latter is rather neg-
ligibled.

The first and important feature of our differential plots is
again the indication of limiting asymptotic valuesQ` fcorre-
sponding todQ/d lnsNd=0g and approaching slopes which
are universal, independent of the level of noise reduction.
This is shown for the multipole powersP2–P5 in Fig. 4, and

also for the relative variabilitysbetween clusters at fixedNd
of extremal cluster radius in Fig. 5. The universality of the
asymptotic values of all these plots is strong indication that
the limiting distribution of cluster shape is universal.

The slopes of these same plots indicate the correction to
scaling exponents, which also appear to be universal with
respect to the noise reduction. Figure 6 shows the measured
values of the correction to scaling exponents for each of the
quantities plottedsand all multipole moments measuredd.
The exponent for the quadrupole powerP2 is significantly
different from the exponents forj /Rdep and P3. There is no
quantity which shows a slower correction to scaling than
j /Rdep, which suggests that the result found by Somfaiet al.
f7g in some sense also applies to clusters grown in three
dimensions.

The values of the correction to scaling exponents are least
precise for the highest multipole moments, as these are most
sensitive to the fine structure of the cluster. Intriguingly, the
asymptotic value of the relative penetration depth for DLA
clusters in three dimensions is equal within measurement
error to that of the two dimensional case: see Fig. 3 here and
Fig. 3 in f12g. The correction to scaling exponent forj /Rdep

is around2
3 the value of the exponent for clusters grown in

FIG. 4. Differential plots for the first foursnontriviald multipole momentsP2−P5. All of the plots exhibit universal asymptotic values,
corresponding to the extrapolation to zero derivative, and universal limiting slope corresponding to their correction to scaling exponent. The
correction to scaling exponents were estimated by eye asnsP2d=0.32±0.02,nsP3d=0.24±0.03,nsP4d=0.26±0.06, andnsP5d=0.29±0.05,
where the errors represent the maximum believable error.
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two dimensions, indicating that DLA clusters in three dimen-
sions are considerably slower to mature.

III. RESOLUTION OF ANGULAR STRUCTURE

We have also made a limited analysis of how the multi-
pole powers depart from universal correction to scaling be-
haviour at smallerN. For the differential plot of each multi-
pole power, at each value of noise reductionA=0.03 to A
=1, we identified the first point lying on the universal curve.
Quantified in terms of the corresponding cluster radiusRl
these vary systematically with the multipole indexl, as
shown in Fig. 7. Their dependence onA is weak and below
thessubstantiald scatter, so values from differentA have been
combined statistically at eachl. sFor the highest level of
noise reductionA=0.01 andl ù6, the differential plots gen-

erally approach the fixed point from the opposite direction,
making it hard to decideRl consistently; we therefore ex-
cludedA=0.01 from this analysis.d

The plot ofRl in Fig. 7 is clearly consistent with a simple
linear dependence onl, and this in turn has a simple inter-
pretation in terms of the smallest cluster radius at which the
features probed by thel ’th angular harmonics can be sup-
ported. The cluster cannot support features finer than the
particle size, which at radiusR corresponds to angular scale
1/R, while angular harmonics of orderl are sensitive to fea-
tures of angular scale 1/l. Matching these leads toRl ~ l in
agreement with our data.

Thus we are again led to the conclusion that the regime of
universal correction to scaling sets in once the cluster is large
enough to support sufficient ramification. The thresholds of
R seen for the convergence of the fractal dimension and the
relative penetration depth correspond to the threshold onR
seen forP3. While this is at first sight rather low, it is rea-
sonable when one notes from Fig. 1 that these clusters have
relatively few major arms, equivalent to their major angular
features being at large angles.

IV. FIXED POINT NOISE REDUCTION

It is clear from differential plots such as Fig. 3 that the
noise reduction “controls” the slowest correction to scaling.
For low values ofA this correction to scaling is strongly
reduced, and we may write the behavior of this correction as
follows:

QN = Q` + CQsAdN−n. s9d

Other corrections to scaling need not depend onA, but it is
quite evident that the amplitude of the slowest correction to
scaling is strongly affected by it. If there is some value ofA
for which all CQsAd are zero, then this value of the noise
reduction would correspond to the fixed point of a renormal-
ization schemesseef10gd. The plots forP2–P4 suggest that
the fixed point noise reduction isAf ,0.01 and plots of

FIG. 5. Differential plot of the relative fluctuation in extremal
radius, dRext/Rext. The asymptotic value is udRext/Rextu`
=0.032±0.004 which leads to an estimate of the fixed point noise
reduction ofe* =0.0064±0.0016.

FIG. 6. The correction to scaling exponents obtained from dif-
ferential plots of different multipole powers, and the two other
quantities marked. The exponent for the quadrupole powerP2 is
significantly different from the exponents measured forj /Rdep and
P3.

FIG. 7. For each multipole power we identified radiusRl where
its differential plot became dominated by the universal slow correc-
tion to scaling. This judgement was made by eye separately for each
value of noise reductionA=1 to A=0.03, and the error bars shown
correspond to error in the mean of lnRl when separate values from
different noise reduction values were combined statistically. The
dependence on noise reduction level was weak. The guideline
shows the consistency of the data with a simple linear dependence
of Rl on the multipole indexl, explained in the text by a simple
spatial resolution threshold.
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j /Rdep,P5 are unclear as to the value of the fixed point noise
reduction. Hence, one estimates that

Af ø 0.01. s10d

The noise reduction of the fixed point can also be esti-
mated from the asymptotic properties of DLA clusters using
the Barker and Ball formulaf10g

e * = D2SdRext

Rext
D2

, s11d

whereRext is the extremal cluster radiussthe radius of the
furthest cluster particle from the seed particled and dRext is
the cluster to cluster variability ofRext. This was originally
cast in terms of the variability ofN at fixed radiusRext and in
two dimensions it was shown to be important to tune out
lattice anisotropyf10g, yet subsequent work restricted to just
232 renormalization cellssand with uncontrolled lattice ef-
fectsd claimed fixed point noise reduction values of order
unity f26g. More recently direct off-lattice measurements us-
ing Eq. s11d were shown to givee* =0.0036±0.0006 in two
dimensionsf12g, in agreement with the trend of values in
f10g. For off-lattice DLA in three dimensions, we now have
from Fig. 5 that the asymptotic value of the relative variabil-
ity of extremal cluster radius isudRext/Rextu`=0.032±0.004.
By the methodology of referencef12g this leads to

e * = 0.0064 ± 0.0016, s12d

in three dimensions, which is consistent with the estimated
value ofAf.

For a noise reduction ofA, one would naively assume that
it would require of orderN/A particles to grow a cluster with
the same radius as a non-noise reduced cluster ofN particles.
Our data below show that this is a systematic underestimate,
so that each value ofA corresponds to a more severe noise
reduction than expected. Figure 8 shows the two point cor-
relation function for DLA clusters grown at different noise
reductions. The graphs have been shifted vertically so that all

the curves collapse to a single line. From the shift factors
used, we estimate the effective noise reductions to be

A = 1, eeff = 1,

A = 0.3, eeff = 0.19,

A = 0.1, eeff = 0.05, s13d

A = 0.03, eeff = 0.012,

A = 0.01, eeff = 0.0034.

Hence one concludes that the fixed point noise reduction in
Eq. s10d should be adjusted to

e f ø 0.0035. s14d

The values fore f and e* differ by a factor of 2, demon-
strating that the identification process is open to some errors.
If, as indicated by the results in Fig. 6, a single slowest
correction to scaling exponent does not control the scaling of
all parameters, then a theoretical renormalization scheme
would need more than one parameter to match this behavior.
If more than one parameter is indeed relevant, then our ar-
guments to matche f ande* based on noise reduction alone is
certainly not expected to be perfect.

V. CONCLUSION

The growth off-lattice of noise-reduced diffusion-limited
aggregates in three dimensions has been considered and
shown to exhibit universality with respect to noise reduction.
The fractal dimension is found to beD=2.50±0.01 which
agrees with previous computationalf13g and mean fieldf27g
estimates. The penetration depth scales with the radius, and
the asymptotic value of the relative penetration depth is
j /Rdep=0.122±0.002 which overlaps the value found for
clusters grown in two dimensionsf12g. The convergence of
the multipole powers provides a very strong indication that
DLA cluster growth, in three dimensions and off-lattice, con-
verges to a universal distribution of cluster shapes.

The relative penetration depth exhibited the slowest cor-
rection to scaling,N0.22±0.03. Some multipole powers and also
the relative fluctuations in extremal radius exhibited correc-
tion to scaling exponents which could be consistent with the
same. However not all quantities exhibit the influence of the
slowest correction to scaling and in particular the conver-
gence to scaling of the dipole power,P2, appears signifi-
cantly faster than that of eitherj /Rdep or P3.

Reducing the input noise by factors up to 100, by growing
clusters in shallow bumps, clearly reduces the amplitude of
the leading correction to scaling. This supports in three di-
mensions the idea of Barker and Ballf10g that the intrinsic
fluctuation level is the physical origin of that slowest correc-
tion to scaling. We estimated the fixed point noise reduction
to be e f ,0.0035 and this is close to the value estimated
using the Barker and Ballf10g formula in terms of relative
fluctuation in extremal radius.

All of the above discussion relies on growing clusters
beyond the influence of much faster corrections to scaling

FIG. 8. The two point correlation function for clusters grown in
three dimensions, scaled by effective noise reduction factors,eeff.
This noise reduction is chosen so that a data collapse is seen for
small L.
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with n.0.6, as most dominantly observed in the fractal di-
mension. These have little sensitivity to noise reduction
when plotted in terms of the radius of growth. This and the
variation of their relevance on the order of multipole power
studied is consistent with the trivial requirement that the
cluster must grow large enough to support the required scales
of ramification.

Taken together our results support the hypothesis that iso-
tropic DLA in three dimensions approaches a simple en-
semble of statistically self-similar clusters, with a rather slow
approach to scaling which is associated with the level of
local geometric fluctuation. From this point of view, a quan-

titative model of the convergence of that fluctuation level
appears to be the outstanding challenge in understanding iso-
tropic DLA sin any dimensiond. Another important challenge
for three dimensions, for which work is in progress, is the
role which material anisotropy can playf28g.
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